

A Leader of Fused Fiber Technologies in the World

- KEY ISSUES FOR FFPs
- SUPERFUSION TECHNOLOGIES
- KEY COMPONENTS FOR SENSING SYSTEMS
- PRODUCT RELIABILITY
- CAPABILITY AND CAPACITY

- KEY ISSUES FOR FFPs
- SUPERFUSION TECHNOLOGIES
- KEY COMPONENTS FOR SENSING SYSTEMS
- PRODUCT RELIABILITY
- CAPABILITY AND CAPACITY

KEY ISSUES FOR FFPs

1. Basic Structure of FFPs

Longitude Cross-Sectional Structure

KEY ISSUES FOR FFPs

2. Two most important issues:

•To avoid specifications shifting outside the given

values at any time during lifetime of system.

•To avoid fiber breakage inside stainless steel tube

KEY ISSUES FOR FFPs

3. Designing Proposal of Reliability:

Method1: Enhancing the stability of package for environment. a. Hermetically sealed using special glass tube b. Glass solder process.

Method2: Enhancing the stability of coupling region of fused device for environment. a. Strong Fusion and Stress Release

- KEY ISSUES FOR FFPs
- SUPERFUSION TECHNOLOGIES
- KEY COMPONENTS FOR SENSING SYSTEMS
- PRODUCT RELIABILITY
- CAPABILITY AND CAPACITY

1. Process Highlight

2.Manufacturing Process

Step1

2.Manufacturing Process

2.Manufacturing Process

3. Different Cross-sectional Shapes in Different Process

1000°C is much far from the melting point of silica of fiber, so fibers can not be truly fused or melt together, and this process is used by more than 95% of manufacturing vendors who make fused fiber components such as splitters / WDMs. But, Comcore uses special process which can totally fuse two fibers together, becoming more reliable, more stable, and against humility.

4. Real Cross-sectional Shape for Different FFPs

5. Modal Field Distribution in Coupling Region

In Superfusion Process (Comcore process)

In Stick Process (General process)

6.Comparison Between Different Processes

Process Characteristics	Stick Process	Superfusion Process
Heating temperature	Around 1000 ℃	Around 1700 ℃
Fiber contact form	Stick together	Melting together
Shape of cross section	Visible Pre-fiber Shape	Invisible pre-fiber
Micro-cracks on surface of fibers	Not eliminated	Fully Eliminated

7. Features of FFPs by using Superfusion process:

- (1) The structure of coupling region is very strong, the cross-sectional shape looks like a twin core fiber.
- (2) Optical characteristics of devices are , relatively speaking, insensitive to surrounding environment.
- (3) Very small twisted effect due to almost circularly symmetric structure of cross-section.
- (4) Eliminate micro-cracks on the surface of fibers included in non-coupling and coupling region of FFP to protect the moisture enters these micro-cracks and proliferates them, causing FFP degradation and ultimate failure.

(5) Improve polarization dependent loss and wavelength isolation for WDMs.

- KEY ISSUES FOR FFPs
- SUPERFUSION TECHNOLOGIES
- KEY COMPONENTS FOR SENSING SYSTEMS
- PRODUCT RELIABILITY
- CAPABILITY AND CAPACITY

1. Non-Polarization-Maintaining Fiber Splitters

2. Polarization-Maintaining Fiber Splitters

3. Multimode Fiber Splitters

1. Non-Polarization-Maintaining Fiber Splitters

Cross-sectional shapes

All of these components are manufactured by using Superfusion Process

2. Polarization-Maintaining Fiber Splitters

Cross-sectional shapes

1x2(2x2) Hybrid

1x3 (3x3) Hybrid

1x2(2x2)

3. Multimode Fiber Splitters

Cross-sectional shapes

All of these components are manufactured by using Superfusion Process

- KEY ISSUES FOR FFPs
- SUPERFUSION TECHNOLOGIES
- KEY COMPONENTS FOR SENSING SYSTEMS
- PRODUCT RELIABILITY
- CAPABILITY AND CAPACITY

1. Quality Control Systems

(1) Quality Assurance System: ISO9001

(2) Qualification & Reliability: Submarine Standard

(3) Process Control: Comcore's Process System

2. Qualification Test Results

(1) Damping Heat Test Results for 3-dB splitter in 85C/RH85%

http://www.gouldfo.com/tech/glas.html#figure2

Comcore Technologies' Comcore Technologies Properties http://www.comcore.com

2. Qualification Test Results

(2) Damp-Heat Testing for 1550nm 95/5% 1x2 Tap (Initial Data)

2. Qualification Test Results

(3) \triangle PDL Results of Damp Heat Test for 1550nm 50:50 1x2 Splitter

2. Qualification Test

(4) \triangle PDL Results of Damp Heat Test for 1550nm 95:5 1x2 Tap

4. Process Control: Comcore's Process System

Standard Manufacturing Process of FFP

5. Quality Control: Comcore's Process System

Optical Quality Assurance Process

- KEY ISSUES FOR FFPs
- SUPERFUSION TECHNOLOGIES
- KEY COMPONENTS FOR SENSING SYSTEMS
- PRODUCT RELIABILITY
- CAPABILITY AND CAPACITY

CAPABILITY AND CAPACITY

2. Manufacturing Capacity*

Product Type	Qty/Month
1x2 (2x2) Single Mode Splitter / Mixer	1000
NxM Monolithically-Fused Multimode Splitter / Mixer	300
1x2 (2x2) Polarization-Maintaining Fiber Splitter / Mixer	150

•On base of a workstation/ person /shift. We have total 20 own workstations.

Thank You!

